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1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [6] in

1966 as a generalization of the concept of set-theoretic difference and propo-

sitional calcului. Since then a great deal of literature has been produced on

the theory of BCK-algebras. The hyper structures theory(called also multi

algebras) was introduced in 1934 by F. Marty at the 8th congress of Scandina-

vian Mathematicians [10]. In [9], Y. B. Jun et al. applied the hyper structures

to BCK-algebras, and introduced the notion of a hyper BCK-algebra which

is a generalization of BCK-algebra, and investigated some related properties.

Now, we follow [9] and [7] and introduce the notion of branch of a hyper BCK-

algebra. We consider a hyper BCK-algebra that is a direct sum of branches,

and investigate related properties. We give a necessary condition for a hyper
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BCK-ideal of lower hyper BCK-semilattice to be prime. Also, we define the

hyper BCK-chain and obtain a condition for [a) to be a hyper BCK-ideal.

We prove that if H is a hyper BCK-chain and [a) is finite for any a ∈ H,

then | Aut(H) |= 1. Finally, we state the relation between the branches of two

isomorphic hyper BCK-algebras.

2. Preliminaries

We first present some elementary aspects of hyper BCK-algebras that are

necessary for this paper, and for more details we refer to [9] and [8]. Let H be

a nonempty set endowed with a hyper operation “ ◦ ”, that is, ◦ is a function

from H×H to P∗(H) = P(H)\ϕ. For two subsets A and B of H and x, y ∈ H,

denote by A ◦B, x ◦B and A ◦ y the sets
∪

a∈A,b∈B

a ◦ b,
∪
b∈B

x ◦ b and
∪

a∈A

a ◦ y,

respectively.

Definition 2.1. [9] A nonempty set H endowed with a hyper operation “ ◦ ”
and a constant 0 is said to be a hyper BCK-algebra if it satisfies the following

axioms:

(H1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y,

(H2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

(H3) x ◦H ≪ {x},

(H4) x ≪ y and y ≪ x imply x = y,

where x ≪ y is defined by 0 ∈ x ◦ y, and for every A,B ⊆ H, A ≪ B is defined

by ∀a ∈ A, ∃b ∈ B such that a ≪ b. In such case, we call “≪” the hyper order

in H.

Theorem 2.2. [9] In any hyper BCK-algebra H, we have

(a1) 0 ◦ x = {0},
(a2) x ◦ 0 = {x},
(a3) x ≪ x,

(a4) x ◦ y ≪ {x},
(a5) A ≪ A,

(a6) A ≪ 0 implies A = {0},
(a7) A ⊆ B implies A ≪ B,

(a8) y ≪ z implies x ◦ z ≪ x ◦ y,
(a9) x ◦ y = {0} implies (x ◦ z) ◦ (y ◦ z) = {0},

for any x, y, z ∈ H and A,B ⊆ H.

Definition 2.3. [9] Let H be a hyper BCK-algebra. Then a nonempty subset

S of H is called a hyper subalgebra of H if S is a hyper BCK-algebra with

respect to the hyper operation “◦” on H. If S is a nonempty subset of a hyper
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BCK-algebra H, then S is a hyper subalgebra of H if and only if x ◦ y ⊆ S for

all x, y ∈ S.

Theorem 2.4. [9] Let H be a hyper BCK-algebra. Then the set S(H) := {x ∈
H| x ◦ x = {0}} is a hyper subalgebra of H, which is called BCK-part of H.

Moreover, H is a BCK-algebra if and only if S(H) = H.

Definition 2.5. [9, 8] Let H be a hyper BCK-algebra. Then, a nonempty

subset I of H with 0 ∈ I is called a weak hyper BCK-ideal of H if it satisfies:

(∀x, y ∈ H)(x◦y ⊆ I and y ∈ I =⇒ x ∈ I); hyper BCK-ideal ofH if it satisfies:

(∀x, y ∈ H)(x◦y ≪ I and y ∈ I =⇒ x ∈ I) ; reflexive hyper BCK-ideal of H if

it is a hyper BCK-ideal of H and satisfies: (∀x ∈ H) x◦x = {0}; strong hyper

BCK-ideal of H if it satisfies: (∀x, y ∈ H)(x◦ y)∩ I ̸= ϕ and y ∈ I =⇒ x ∈ I).

Theorem 2.6. [9, 8] (i) Every strong hyper BCK-ideal of a hyper BCK-

algebra is a hyper BCK-ideal.

(ii) Every hyper BCK-ideal of a hyper BCK-algebra is a weak hyper BCK-

ideal.

Theorem 2.7. [8] Let A be a subset of a hyper BCK-algebra H. If I is a

hyper BCK-ideal of H such that A ≪ I, then A ⊆ I.

Definition 2.8. [1] Let H be a hyper BCK-algebra, ρ be an equivalence

relation on H and A,B ⊆ H. Then

(i) we write AρB, if there exist a ∈ A and b ∈ B such that aρb,

(ii) we write Aρ̄B, if for all a ∈ A there exists b ∈ B such that aρb and for

all b ∈ B there exists a ∈ A such that aρb,

(iii) ρ is called a congruence relation onH, if xρy and x′ρy′, then x◦x′ρ̄y◦y′,
for all x, y, x′, y′ ∈ H,

(iv) ρ is called regular on H, if x ◦ yρ{0} and y ◦ xρ{0}, then xρy, for all

x, y ∈ H.

Theorem 2.9. [1] Let ρ be a regular congruence relation on H and H
ρ = {[x]ρ |

x ∈ H}. Then H
ρ with hyperoperation “◦” and hyperorder “≪” which is defined

as follows:

[x]ρ ◦ [y]ρ = {[z]ρ | for some z ∈ x ◦ y}, [x]ρ ≪ [y]ρ ⇐⇒ [0]ρ ∈ [x]ρ ◦ [y]ρ
is a hyper BCK-algebra which is called quotient hyper BCK-algebra.

3. Direct Sum of Branches

Definition 3.1. [7] An element a of a hyper BCK-algebra H is called a hy-

peratom if it satisfies

(∀x ∈ H)(x ≪ a =⇒ x = 0 or x = a.)

Denote by A(H) the set of all hyperatoms of H. Obviously, 0 ∈ A(H).
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Lemma 3.2. Let H be a hyper BCK-algebra. Then the set A(H) is a hyper

subalgebra of H.

Proof. Let a, b ∈ A(H). Then by Theorem 2.2(a4), we have a ◦ b ≪ {a}. This
implies that t ≪ a, for any t ∈ a ◦ b. Since a is a hyperatom, we get t = 0 or

t = a. Hence a ◦ b ⊆ {0, a} and so a ◦ b ⊆ A(H). Therefore, A(H) is a hyper

subalgebra of H. □

Definition 3.3. Let H be a hyper BCK-algebra. For any hyperatom a ∈
A∗(H) = A(H)− {0}, the set

B(a) := {x ∈ H | a ≪ x} ∪ {0}

is called the branch of H generated by a.

Definition 3.4. A hyper BCK-algebra (H,≪) is called ordered if the hyper-

order “ ≪ ”is transitive.

For any element a of a hyper BCK-algebra H, we denote

[a) := {x ∈ H | x ≪ a}.

Lemma 3.5. Let H be an ordered hyper BCK-algebra. If the set [a) is finite

for any a ∈ H, then

H =
∪

a∈A∗(H)

B(a).

Proof. It suffices to show that for any 0 ̸= x ∈ H, there exists a ∈ A∗(H) such

that x ∈ B(a). Let 0 ̸= x ∈ H. If x is a hyperatom , then, since x ∈ B(x),

the result holds. Otherwise, there is x1 ∈ H such that x1 ≪ x and x1 ̸= x. If

x1 ∈ A∗(H), then x ∈ B(x1), and so the proof is complete. Otherwise, there

exists x2 ∈ H such that x2 ≪ x1 and x2 ̸= x1. By transitivity of ≪, we get

x2 ≪ x1 ≪ x. Since [x) is finite, this process will be stopped in a hyperatom

element, e.i., there exists xn ∈ A∗(H) such that xn ≪ xn−1 ≪ .... ≪ x1 ≪ x.

Thus x ∈ B(xn). This completes the proof. □

Definition 3.6. An ordered hyper BCK-algebra H is called a direct sum of

branches and denoted by H =
⊕

a∈A∗(H)

B(a) if it satisfies the following:

(i) H =
∪

a∈A∗(H)

B(a),

(ii) B(a) ∩B(b) = {0}, for any a, b ∈ A∗(H) with a ̸= b.

Example 3.7. (i) Let H = {0, a, b, c}. Consider the following table:

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0, a} {0} {a}
b {b} {b} {0, a, b} {b}
c {c} {c} {c} {0, c}
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Then (H; ◦, 0) is an ordered hyper BCK-algebra. It is routine to check that

A∗(H) = {a, c}, B(a) = {0, a, b} and B(c) = {0, c}. ThereforeH = B(a)⊕B(c)

and so H is a direct sum of branches.

(ii) Let K = {0, 1, 2, 3}, with hyper operation “ ◦ ” given by the following

table:
◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0, 1} {1} {0}
2 {2} {2} {0} {0}
3 {3} {2} {1} {0}

Then (K; ◦, 0) is an ordered hyper BCK-algebra but it is not a direct sum of

branches since B(1) ∩B(2) ̸= {0}.

Lemma 3.8. Let H =
⊕

a∈A∗(H)

B(a). Then the following statements hold for

any x, y ∈ H, T ⊆ H and a ∈ A∗(H).

(i) {x} ≪ B(a) implies x ∈ B(a),

(ii) T ≪ B(a) implies T ⊆ B(a),

(iii) (x ◦ y) ∩B(a) ̸= ϕ, {0} implies x ◦ y ⊆ B(a).

Proof. (i) Let x ∈ H be such that {x} ≪ B(a) for some a ∈ A∗(H). If x = 0,

then clearly x ∈ B(a). Assume that x ̸= 0. Thus there exists z ∈ B(a)

such that x ≪ z. Since H =
⊕

a∈A∗(H)

B(a), there exists b ∈ A∗(H) such that

x ∈ B(b). Hence b ≪ x and so b ≪ z. Then z ∈ B(a) ∩ B(b). It follows from

x ≪ z and x ̸= 0 that z ̸= 0. Hence B(a) ∩ B(b) ̸= {0} and so by Definition

3.6, a = b. Therefore x ∈ B(a).

(ii) It is a consequence from (i).

(iii) Let x, y ∈ H and let a ∈ A∗(H) be such that (x ◦ y) ∩ B(a) ̸= ϕ, {0}.
Then there exists 0 ̸= t ∈ x ◦ y such that t ∈ B(a). Hence a ≪ t and so from

x ◦ y ≪ x, we get a ≪ x. This implies that x ∈ B(a) and so x ◦ y ≪ B(a).

Then by (ii), we get x ◦ y ⊆ B(a), which completes the proof. □

Proposition 3.9. Let H =
⊕

a∈A∗(H)

B(a). Then for any a ∈ A∗(H), we have

(i) B(a) is a hyper subalgebra of H,

(ii) B(a) is a weak hyper BCK-ideal of H,

(iii) B(a) is a strong hyper BCK-ideal of H.

Proof. (i) Let a ∈ A∗(H) and x, y ∈ B(a). Since x ◦ y ≪ {x} ∈ B(a), it follows

that x ◦ y ≪ B(a). Hence by Lemma 3.8(ii), we get x ◦ y ⊆ B(a). Therefore

B(a) is a hyper subalgebra of H.

(ii) Let x, y ∈ H be such that x◦y ⊆ B(a) and y ∈ B(a), for some a ∈ A∗(H).

We will show that x ∈ B(a). If x◦y = {0}, then x ≪ y and so x ≪ B(a). Hence

by Lemma 3.8 (i), x ∈ B(a). If x ◦ y ̸= {0}, then there exists (0 ̸=)t ∈ x ◦ y
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and so a ≪ t. Since t ≪ x, we get x ∈ B(a). Therefore B(a) is a weak hyper

BCK-ideal of H.

(iii) Let x, y ∈ H be such that y ∈ B(a) and (x ◦ y) ∩ B(a) ̸= ϕ for some

a ∈ A∗(H). If (x ◦ y)∩B(a) = {0}, then 0 ∈ x ◦ y and so x ≪ y, which implies

that x ∈ B(a). If (x◦y)∩B(a) ̸= {0}, then by Lemma 3.8 (iii), x◦y ⊆ B(a). By

(ii), B(a) is a weak hyper BCK-ideal. Hence from x ◦ y ⊆ B(a) and y ∈ B(a),

we get x ∈ B(a). Therefore B(a) is a strong hyper BCK-ideal. □

Theorem 3.10. Let H =
⊕

a∈A∗(H)

B(a). Then for any nonempty subset Q of

A∗(H),
⊕
a∈Q

B(a) is a strong hyper BCK-ideal of H.

Proof. The proof is similar to the proof of Proposition 3.9(iii) by some modi-

fication. □

Since every strong hyper BCK-ideal is a (weak) hyper BCK-ideal, we have

the following corollary.

Corollary 3.11. Let H =
⊕

a∈A∗(H)

B(a). Then for any nonempty subset Q of

A∗(H),
⊕
a∈Q

B(a) is a (week) hyper BCK-ideal of H.

The following proposition shows that the union of two direct sum of branches

is a direct sum of branches too.

Proposition 3.12. Let H =
⊕

a∈A∗(H)

B(a) and K =
⊕

b∈A∗(K)

B(b). If H ∩K =

(0), then H ⊕K is a direct sum of branches, where H ⊕K = H ∪K and its

hyperoperation “ ◦ ” is defined as follows:

x ◦ y :=


x ◦H y if x, y ∈ H,

x ◦K y if x, y ∈ K,

{x} otherwise

(3.1)

for all x, y ∈ H ∪K.

Proof. From [9], it is known that H ⊕ K is a hyper BCK-algebra. By (3.1),

x ≪H⊕K y if and only if x, y ∈ H or x, y ∈ K. This implies that H ⊕ K

is ordered. Let a ∈ A∗(H) and let (0 ̸=)x ∈ H ⊕ K be such that x ≪ a.

Then 0 ∈ x ◦ a and so from x ̸= 0 we conclude x ◦ a ̸= {x}. Hence, it follows

from (3.1) and a ∈ H that x ◦ a = x ◦H a. Then x ≪H a. Since a is a

hyperatom of H, we get x = a. Hence a is a hyperatom of H ⊕ K and so

A∗(H) ⊆ A∗(H ⊕ K). Similarly, we can show that A∗(K) ⊆ A∗(H ⊕ K).

Thus A∗(H) ∪ A∗(K) ⊆ A∗(H ⊕K). Obviously, since H,K ⊆ H ⊕K, we get

A∗(H⊕K) ⊆ A∗(H)∪A∗(K). Hence A∗(H⊕K) = A∗(H)∪A∗(K). It is clear

that H ∪ K = (
⊕

a∈A∗(H)

B(a)) ∪ (
⊕

b∈A∗(K)

B(b)). Since B(a) ∩ B(b) = (0) for
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any a ∈ A∗(H) and b ∈ A∗(K), we obtain H ⊕K =
⊕

c∈A∗(H)∪A∗(K)

B(c) and so

H ⊕K =
⊕

c∈A∗(H⊕K)

B(c). Therefore H ⊕K is a direct sum of branches. □

We recall that an ordered hyper BCK-algebra is said to be a lower hyper

BCK-semilattice if x ∧ y, the greatest lower bound of x and y, exists for any

x, y ∈ H. Also, a proper hyper BCK-ideal P of a lower hyper BCK-semilattice

is said to be prime if x ∧ y ∈ P implies x ∈ P or y ∈ P for any x, y ∈ H (see

[5]).

Proposition 3.13. Let H =
⊕

a∈A∗(H)

B(a) be a lower hyper BCK-semilattice

and | P |≥ 2. Then for any b ∈ A∗(H), Qb :=
∪

b̸=a∈A∗(H)

B(a) is a prime hyper

BCK-ideal of H.

Proof. Let b ∈ A∗(H). By Corollary 3.11, Qb is a hyper BCK-ideal of H. Let

x, y ∈ H be such that x ̸∈ Qb and y ̸∈ Qb. Hence, we get x, y ∈ B(b), x ̸= 0 and

y ̸= 0. Thus b ≪ x, y and so b ≪ x∧ y. It follows that x∧ y ∈ B(b). Moreover,

x ∧ y ̸= 0 because b ̸= 0. Hence x ∧ y ̸∈ Qb. Therefore Qb is prime. □

The following theorem gives a necessary condition for a hyper BCK-ideal

to be prime.

Theorem 3.14. Let H =
⊕

a∈A∗(H)

B(a) be a lower hyper BCK-semilattice. If

I is a prime hyper BCK-ideal of H, then H − I ⊆ B(a) for some a ∈ A∗(H).

Proof. Let I be a prime hyper BCK-ideal of H. If | A∗(H) |= 1, then B(a) =

H for a ∈ A∗(H) and so clearly H − I ⊆ B(a). Assume that | A∗(H) |≥ 2.

Suppose on the contrary, H − I ̸⊆ B(a) for any a ∈ A∗(H). Then, since

H − I ⊆
∪

a∈A∗(H)

B(a) and | A∗(H) |≥ 2, there exist b, c ∈ A∗(H) with b ̸= c

such that (H − I) ∩ B(b) ̸= ϕ and (H − I) ∩ B(c) ̸= ϕ. Hence there are

x ∈ (H − I)∩B(b) and y ∈ (H − I)∩B(c). This imply x ∈ B(b), y ∈ B(c) and

x, y ̸∈ I. By Corollary 3.11, B(b) is a hyper BCK-ideal of H. Then it follows

from x ∧ y ≪ x ∈ B(b) and Lemma 3.8(i) that x ∧ y ∈ B(b). Similarly, we

have x ∧ y ∈ B(c). Hence x ∧ y ∈ B(b) ∩B(c) and so x ∧ y = 0. On the other

hand, since x, y ̸∈ I and I is prime, we have x ∧ y ̸∈ I. Hence 0 ̸∈ I, which a

contradiction. Therefore H − I ⊆ B(a) for some a ∈ A∗(H). □

Proposition 3.15. Let H =
⊕

a∈A∗(H)

B(a). If the branch B(a) is bounded

such that S(H)∩B(a) = {0, ca} where ca is an upper bound of B(a), for some

a ∈ A∗(H), then I := H − {ca} is a hyper BCK-ideal of H.

Proof. Obviously, 0 ∈ I. It suffices to show that the inequality ca ◦ x ≪ I does

not hold for any x ∈ I. Suppose on the contrary that ca ◦x ≪ I for some x ∈ I.
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Then for any t ∈ ca ◦ x there exists it ∈ I such that t ≪ it. Since ca ∈ S(H),

we get ca ◦ ca = {0}. Applying the axiom (H1), we have

t ◦ t ⊆ (ca ◦ x) ◦ (ca ◦ x) ≪ ca ◦ ca = {0}.

This implies that t ◦ t = {0}. Hence t ∈ S(H). By Lemma 3.8(i), since

t ≪ ca ∈ B(a), we have t ∈ B(a). Therefore t ∈ S(H) ∩ B(a) and so t = 0 or

t = ca. If t = 0, then ca ≪ x, which implies that x ∈ B(a). Thus, since ca
is an upper bound of B(a), we have ca = x, which a contradiction. If t = ca,

then ca ≪ it. This implies that it ∈ B(a) and so c)a = it. Hence ca ∈ I,

which a contradiction. Therefore the assumption is false and so I is a hyper

BCK-ideal. □

Theorem 3.16. Let H =
⊕

a∈A∗(H)

B(a), and let all branches of H be bounded.

Assume that S(H) = U ∪ {0}, where U is the set of upper bounds of branches.

Then M is a maximal hyper BCK-ideal of H if and only if M = H − {ca},
for some ca ∈ U .

Proof. Let M be a maximal hyper BCK-ideal of H. Then M is prime and so

by Theorem 3.14, there exists a ∈ A∗(H) such that H − M ⊆ B(a). Hence

there exists T ⊆ B(a) such that M =
⊕

a̸=b∈A∗(H)

B(b) ∪ T . We note that if

| A∗ |= 1, then we have M = T . Assume that ca ∈ B(a) is an upper bound of

B(a). If ca ∈ T , then B(a) ⊆ T and so M = H, which a contradiction. Hence

ca ̸∈ T . This implies that M ⊆ H − {ca}. By Proposition 3.15, H − {ca}
is a hyper BCK-ideal. Then by maximality of M , we get M = H − {ca}.
Conversely, by Theorem 3.15, the result holds. □

Definition 3.17. A hyper BCK-algebra H is said to be hyperatomic if each

its element is hyperatom, i.e., A(H) = H.

Proposition 3.18. Let H =
⊕

a∈A∗(H)

B(a). Then there exists a regular con-

gruence ρ on H such that the quotient hyper BCK-algebra H
ρ is hyperatomic.

Proof. Let H =
⊕

a∈A∗(H)

B(a). Define the relation ρ on H as follows:

xρy ⇔ x = y = 0 or a ≪ x, y, for some a ∈ A∗(H).

Putting B∗(a) = B(a) − {0}, it is easy to see that the sets {0} and B∗(a) for

any a ∈ A∗(H) form a partition of H. This implies that ρ is an equivalence

relation on H. It is clear that [0]ρ = {0} and [a]ρ = B∗(a). Let x, y ∈ H be

such that xρy. Then x = y = 0 or x, y ∈ B∗(a), for some a ∈ A∗(H). Hence

for any z ∈ H, x ◦ z = y ◦ z or x ◦ z, y ◦ z ⊆ B∗(a). This implies x ◦ zρy ◦ z.
Similarly, we can show that if xρy, then z ◦ xρz ◦ y, for any z ∈ H. Thus ρ is

congruence. To proof the regularity of ρ assume that x ◦ yρ0 and y ◦ xρ0 for

some x, y ∈ H. Then there are t ∈ x ◦ y and s ∈ y ◦ x such that tρ0 and sρ0.
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Then, from [0]ρ = {0}, we get t = s = 0, and so x ≪ y and y ≪ x. Hence

x = y and consequently, xρy. Thus ρ is regular and so by Theorem 2.9, H
ρ is

a hyper BCK-algebra. Let [a]ρ ∈ H
ρ . If [x]ρ ≪ [a]ρ, for some [x]ρ ∈ H

ρ , then

[0]ρ ∈ [x]ρ ◦ [a]ρ and so [0]ρ = [t]ρ for some t ∈ x◦a. Hence t = 0 and so x ≪ a.

Since a is a hyperatom, we get x = 0 or x = a, which implies [x]ρ = [0]ρ or

[x]ρ = [a]θ. Therefore
H
ρ is hyperatomic. □

Now, we recall the definition of hypercondition and considerH =
⊕

a∈A∗(H)

B(a)

satisfying the hypercondition.

Definition 3.19. [9] A hyper BCK-algebra H is said to satisfy the hypercon-

dition if, for every a, b ∈ H, the set ▽(a, b) := {x ∈ H | 0 ∈ (x ◦ a) ◦ b} has

the greatest hyperelement. This greatest hyperelement is denoted by a ⊖ b.

Obviously, 0, a, b ∈ ▽(a, b).

Lemma 3.20. If H =
⊕

a∈A∗(H)

B(a) satisfies the hypercondition, then H =

B(a), for some a ∈ A∗(H).

Proof. Let t be a non-zero element of H. Then there exists a ∈ A∗(H) such

that t ∈ B(a). By the hypothesis, t⊖ x exists, for all x ∈ H. Since t ≪ t⊖ x,

we get t⊖x ∈ B(a). By Lemma 3.8(i), it follows from x ≪ t⊖x that x ∈ B(a),

for any x ∈ H. This implies that H = B(a). □

4. Hyper BCK-Chain

Definition 4.1. An ordered hyper BCK-algebra H is said to be a hyper

BCK-chain if x ≪ y or y ≪ x, for any x, y ∈ H.

Example 4.2. (i) Let N = {0, 1, 2, ...} and define a hyperoperation “ ◦ ” on N

as follows:

x ◦ y :=

{
{0, x} if x ≤ y,

{x} otherwise

for all x, y ∈ H. Then (N ; ◦, 0) is a hyper BCK-chain. In fact 0 ≪ 1 ≪ 2 ≪ ...;

Then H is not a hyper BCK-chain since neither 2 ≪ 3 nor 3 ≪ 2.

(ii) Consider a hyperBCK-algebraH = {0, 1, 2, 3} with the following Cayley

table:

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0, 1} {0} {0, 1}
2 {2} {2} {0} {2}
3 {3} {3} {3} {0}

Then H is not a hyper BCK-chain since neither 2 ≪ 3 nor 3 ≪ 2.



52 H. Harizavi

(iii) Let (H; ◦, 0) be a hyper BCK-chain, and let α ̸∈ H. Then the Iseki’s

hyper BCK-algebra K := (H ∪ {α}; ◦′
, 0) which ◦′

is defined by

α◦
′
α = {0}, x◦

′
α = {0}, α◦

′
x = {α}, and x◦

′
y = x ◦ y, for any x, y ∈ H,

is a hyper BCK-chain.

Definition 4.3. [4] Let H be a hyper BCK-algebra. We say that H satisfies

the condition right-multiple (for short, condition r-m) if the following implica-

tion holds:

(∀x, y, z ∈ H) (x ≪ y =⇒ x ◦ z ≪ y ◦ z).

The following theorem gives a condition for the set [a) to be a hyper BCK-

ideal.

Theorem 4.4. Let H be a hyper BCK-chain satisfying the condition r-m. If

[a) ∪ S(H) = H and [a) ∩ S(H) = {0}, then [a) is a hyper BCK-ideal of H.

Proof. Obviously, 0 ∈ [a). It suffices to show that the inequality x ◦ b ≪ [a)

does not hold for any 0 ̸= x ∈ S(H) and b ∈ [a). Suppose on the contrary that

the inequality holds for some 0 ̸= x ∈ S(H) and b ∈ [a). Then for any t ∈ x ◦ b
there exists dt ∈ [a) such that t ≪ dt. Since x ∈ S(H), we get x ◦ x = {0}.
Then, using axiom H1, we obtain t ◦ t = {0}. Hence t ∈ S(H). On the other

hand, it follows from t ≪ dt ∈ [a) that t ∈ [a). Thus t ∈ [a)∩S(H) = {0}, and
so t = 0. Hence 0 ∈ x ◦ b. This implies that x ≪ b. Since b ≪ a, we get x ∈ [a)

and so (0 ̸=)x ∈ [a) ∩ S(H), which a contradiction. Therefore [a) is a hyper

BCK-ideal of H. □

The following example shows that the condition [a)∩S(H) = {0} in Theorem

4.4 is necessary.

Example 4.5. Consider a hyper BCK-chain H = {0, a, b, c} with the following

Cayley table:

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {a} {0, a} {0, a}
c {c} {a} {a} {0, a}

Then [a) = {0, a} = S(H). Obviously, b ◦ a = {a} ≪ [a) and b ̸∈ [a). It follows

that [a) is not a hyper BCK-ideal of H.

Definition 4.6. [4] Let H be a hyper BCK-algebra. We say that H satisfies

the condition ≪-scalar if the following implication holds:

(∀x, y ∈ H) (x ≪ y =⇒ x ◦ y = {0}).
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Lemma 4.7. If a hyper BCK-algebra satisfies the condition ≪-scalar, then it

satisfies the condition r-m.

Proof. Let x, y ∈ H be such that x ≪ y. Then by hypothesis, we have x ◦ y =

{0} and so by Theorem 2.2(a9), we have (x ◦ z) ◦ (y ◦ z) = {0}. This implies

that x ◦ z ≪ y ◦ z. Therefore H satisfies the condition r-m. □
Proposition 4.8. Every hyper BCK-algebra satisfying condition ≪-scalar is

a ordered hyper BCK-algebra.

Proof. Let H be a hyper BCK-algebra satisfying the condition ≪-scalar, and

let x, y, z ∈ H be such that x ≪ y and y ≪ z. Then by hypothesis, we get

x ◦ y = {0} and y ◦ z = {0}. By Theorem 2.3(a9), it follows from x ◦ y = {0}
that (x ◦ z) ◦ (y ◦ z) = {0}. Hence x ◦ z = {0}, that is, x ≪ z. Therefore H is

a ordered hyper BCK-algebra. □

Applying Lemma 4.7 and Theorem 4.4, we have the following corollary.

Corollary 4.9. Let H be a hyper BCK-chain satisfying the condition ≪-

scalar. If [a)∪S(H) = H and [a)∩S(H) = {0}, then [a) is a hyper BCK-ideal

of H.

Theorem 4.10. Let H be a hyper BCK-chain. If the set [a) is finite for any

a ∈ H, then | Aut(H) |= 1.

Proof. Assume that f : H → H is an isomorphism. It suffices to show that

f(x) = x for any x ∈ H. Suppose on the contrary that there exists a ∈ H

such that f(a) ̸= a. Since f(0) = 0 and [a) is finite, then we may suppose that

| [a) |= n, where n is the least number with property f(a) ̸= a and f(x) = x

for any (a ̸=)x ∈ [a). Hence, we can assume that [a) = {xi ∈ H | 0 = x1 ≪
x2 ≪ ... ≪ xn−1 ≪ xn = a}. Therefore f(xi) = xi for any i = 1, 2, ..., n − 1.

Since f is injective, we have f(a) ̸= xi for any i = 1, 2, ..., n and so f(a) ̸∈ [a).

Assume that f(a) = c. Then from c ̸∈ [a) and the fact that H is a chain,

we get a ≪ c and a ̸= c. Since f is surjective, there exists d ∈ H such that

a = f(d). Clearly, d ̸= a. If d ≪ a, then d ∈ [a) and so d = xi for some

i = 1, 2, ..., n − 1. Hence f(d) = d and so from a = f(d) we get a = d. This

implies f(a) = f(d) = d = a, that is, f(a) = a, which a contradiction. Thus

a ≪ d. If follows from f is isotone that f(a) ≪ f(d). Hence c ≪ a, which

a contradiction. Then f(x) = x for any x ∈ H, that is, f = idH . Therefore

| Aut(H) |= 1. □

The following example shows that the finiteness assumption for [a) in The-

orem 4.10 is necessary.

Example 4.11. Let H = {0, 1, 2, ...} ∪ { 1
n : n = 2, 3, ...}. Define a hyperopera-

tion “ ◦ ” on H as follows:

x ◦ y :=

{
{0, x} if x ≤ y,

{x} otherwise
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for all x, y ∈ H. It is routine to check that H is a hyper BCK-chain. Clearly,

[a) is infinite for any (0 ̸=)a ∈ H. Define a function f : H → H by f(n) = n−1

for n = 2, 3, ...; f( 1n ) =
1

n+1 for n = 1, 2, ...; and f(0) = 0. It can be verified

that f is an isomorphism that is not the identity map. Therefore | Aut(H) |> 1.

The following proposition shows that the image of a branch of an isomor-

phism is a branch too.

Theorem 4.12. Let H =
⊕

a∈A∗(H)

B(a) and K =
⊕

b∈A∗(K)

B(b). If all branches

of H and K are chain, then the following statements hold:

(i) If f : H → K is a homomorphism, then f(B(a)) ∩ B(b) ̸= (0) implies

f(B(a)) ⊆ B(b), for any a ∈ A∗(H) and b ∈ A∗(K);

(ii) If f : H → K is an isomorphism, then for any a ∈ A∗(H), there

exists b ∈ A∗(K) such that f(a) = b and f(B(a)) = B(b) and consequently,

| B(a) |=| B(b) |.

Proof. (i) Assume that f(B(a)) ∩ B(b) ̸= (0) for some a ∈ A∗(H) and b ∈
A∗(K). Then there exist x ∈ B(a) and y ∈ B(b) such that y = f(x) ̸= 0. For

any t ∈ B(a), we have t ≪ x or x ≪ t. Since f is isotone, we get f(t) ≪ f(x) or

f(x) ≪ f(t). Hence f(t) ≪ y or y ≪ f(t). If f(t) ≪ y, then by Lemma 3.8(i),

we have f(t) ∈ B(b). If y ≪ f(t), then it follows from b ≪ y that b ≪ f(t) and

so f(t) ∈ B(b). Therefore f(B(a)) ⊆ B(b).

(ii) Let a ∈ A∗(H). Clearly, f(a) ∈ B(b) for some b ∈ Q. Since a ̸= 0, we

get f(a) ̸= 0. Hence b ≪ f(a). Since f is epimorphism, b = f(t) for some

t ∈ H. Thus f(t) ≪ f(a) and so t ≪ a because f−1 is isotone. Since a is

a hyperatom, we get t = a. Hence f(a) = b. To proof the second part (ii),

we note that 0 ̸= f(a) ∈ f(B(a)) ∩ B(b). Using (i), we get f(B(a)) ⊆ B(b).

Let 0 ̸= y ∈ B(b). Then b ≪ y. But b = f(a). Hence f(a) ≪ y and so

a ≪ f−1(y). This implies f−1(y) ∈ B(a). Hence y = f(f−1(y)) ∈ f(B(a)),

and consequently B(b) ⊆ f(B(a)). Therefore B(b) = f(B(a)). It is clear that

| B(a) |=| f(B(a)) |. Therefore | B(a) |=| B(b) |. □
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