DOI: 10.7508/ijmsi.2016.02.003

On Direct Sum of Branches in Hyper BCK-algebras

Habib Harizavi

Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

E-mail: harizavi@scu.ac.ir

ABSTRACT. In this paper, the notion of direct sum of branches in hyper BCK-algebras is introduced and some related properties are investigated. Applying this notion to lower hyper BCK-semi lattice, a necessary condition for a hyper BCK-ideal to be prime is given. Some properties of hyper BCK-chain are studied. It is proved that if H is a hyper BCK-chain and [a) is finite for any $a \in H$, then |Aut(H)| = 1.

Keywords: Hyper BCK-algebra, (weak, strong) Hyper BCK-ideal, Direct sum of branches, Hyper BCK-chain.

2000 Mathematics subject classification: 06F35, 03G25.

1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [6] in 1966 as a generalization of the concept of set-theoretic difference and propositional calcului. Since then a great deal of literature has been produced on the theory of BCK-algebras. The hyper structures theory(called also multi algebras) was introduced in 1934 by F. Marty at the 8th congress of Scandinavian Mathematicians [10]. In [9], Y. B. Jun et al. applied the hyper structures to BCK-algebras, and introduced the notion of a hyper BCK-algebra which is a generalization of BCK-algebra, and investigated some related properties. Now, we follow [9] and [7] and introduce the notion of branch of a hyper BCK-algebra. We consider a hyper BCK-algebra that is a direct sum of branches, and investigate related properties. We give a necessary condition for a hyper

Received 13 June 2013; Accepted 01 January 2016 © 2016 Academic Center for Education, Culture and Research TMU

BCK-ideal of lower hyper BCK-semilattice to be prime. Also, we define the hyper BCK-chain and obtain a condition for [a) to be a hyper BCK-ideal. We prove that if H is a hyper BCK-chain and [a) is finite for any $a \in H$, then |Aut(H)| = 1. Finally, we state the relation between the branches of two isomorphic hyper BCK-algebras.

2. Preliminaries

We first present some elementary aspects of hyper BCK-algebras that are necessary for this paper, and for more details we refer to [9] and [8]. Let H be a nonempty set endowed with a hyper operation " \circ ", that is, \circ is a function from $H \times H$ to $\mathcal{P}^*(\mathcal{H}) = \mathcal{P}(\mathcal{H}) \setminus \phi$. For two subsets A and B of H and $x, y \in H$, denote by $A \circ B$, $x \circ B$ and $A \circ y$ the sets $\bigcup_{a \in A, b \in B} a \circ b$, $\bigcup_{b \in B} x \circ b$ and $\bigcup_{a \in A} a \circ y$, respectively.

Definition 2.1. [9] A nonempty set H endowed with a hyper operation " \circ " and a constant 0 is said to be a hyper BCK-algebra if it satisfies the following axioms:

```
(H1) (x \circ z) \circ (y \circ z) \ll x \circ y,
```

(H2)
$$(x \circ y) \circ z = (x \circ z) \circ y$$
,

(H3)
$$x \circ H \ll \{x\},$$

(H4)
$$x \ll y$$
 and $y \ll x$ imply $x = y$,

where $x \ll y$ is defined by $0 \in x \circ y$, and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call " \ll " the *hyper order* in H.

Theorem 2.2. [9] In any hyper BCK-algebra H, we have

```
(a1) 0 \circ x = \{0\},\
```

- (a2) $x \circ 0 = \{x\},\$
- (a3) $x \ll x$,
- (a4) $x \circ y \ll \{x\},$
- (a5) $A \ll A$,
- (a6) $A \ll 0 \text{ implies } A = \{0\},\$
- (a7) $A \subseteq B$ implies $A \ll B$,
- (a8) $y \ll z$ implies $x \circ z \ll x \circ y$,
- (a9) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$, for any $x, y, z \in H$ and $A, B \subseteq H$.

Definition 2.3. [9] Let H be a hyper BCK-algebra. Then a nonempty subset S of H is called a *hyper subalgebra* of H if S is a hyper BCK-algebra with respect to the hyper operation " \circ " on H. If S is a nonempty subset of a hyper

BCK-algebra H, then S is a hyper subalgebra of H if and only if $x \circ y \subseteq S$ for all $x, y \in S$.

Theorem 2.4. [9] Let H be a hyper BCK-algebra. Then the set $S(H) := \{x \in H | x \circ x = \{0\}\}$ is a hyper subalgebra of H, which is called BCK-part of H. Moreover, H is a BCK-algebra if and only if S(H) = H.

Definition 2.5. [9, 8] Let H be a hyper BCK-algebra. Then, a nonempty subset I of H with $0 \in I$ is called a weak hyper BCK-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y \subseteq I \text{ and } y \in I \Longrightarrow x \in I)$; hyper BCK-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y \ll I \text{ and } y \in I \Longrightarrow x \in I)$; reflexive hyper BCK-ideal of H if it is a hyper BCK-ideal of H and satisfies: $(\forall x \in H) \ x \circ x = \{0\}$; strong hyper BCK-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y) \cap I \neq \phi$ and $y \in I \Longrightarrow x \in I$).

Theorem 2.6. [9, 8] (i) Every strong hyper BCK-ideal of a hyper BCK-algebra is a hyper BCK-ideal.

(ii) Every hyper BCK-ideal of a hyper BCK-algebra is a weak hyper BCK-ideal.

Theorem 2.7. [8] Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCK-ideal of H such that $A \ll I$, then $A \subseteq I$.

Definition 2.8. [1] Let H be a hyper BCK-algebra, ρ be an equivalence relation on H and $A, B \subseteq H$. Then

- (i) we write $A\rho B$, if there exist $a \in A$ and $b \in B$ such that $a\rho b$,
- (ii) we write $A\bar{\rho}B$, if for all $a \in A$ there exists $b \in B$ such that $a\rho b$ and for all $b \in B$ there exists $a \in A$ such that $a\rho b$,
- (iii) ρ is called a congruence relation on H, if $x\rho y$ and $x'\rho y'$, then $x\circ x'\bar{\rho}y\circ y'$, for all $x,y,x',y'\in H$,
- (iv) ρ is called regular on H, if $x \circ y \rho \{0\}$ and $y \circ x \rho \{0\}$, then $x \rho y$, for all $x, y \in H$.

Theorem 2.9. [1] Let ρ be a regular congruence relation on H and $\frac{H}{\rho} = \{[x]_{\rho} \mid x \in H\}$. Then $\frac{H}{\rho}$ with hyperoperation "o" and hyperorder " \ll " which is defined as follows:

 $[x]_{\rho} \circ [y]_{\rho} = \{[z]_{\rho} \mid \text{ for some } z \in x \circ y\}, \quad [x]_{\rho} \ll [y]_{\rho} \iff [0]_{\rho} \in [x]_{\rho} \circ [y]_{\rho}$ is a hyper BCK-algebra which is called quotient hyper BCK-algebra.

3. Direct Sum of Branches

Definition 3.1. [7] An element a of a hyper BCK-algebra H is called a hyperatom if it satisfies

$$(\forall x \in H)(x \ll a \Longrightarrow x = 0 \text{ or } x = a.)$$

Denote by A(H) the set of all hyperatoms of H. Obviously, $0 \in A(H)$.

Lemma 3.2. Let H be a hyper BCK-algebra. Then the set A(H) is a hyper $subalgebra\ of\ H$.

Proof. Let $a, b \in A(H)$. Then by Theorem 2.2(a_4), we have $a \circ b \ll \{a\}$. This implies that $t \ll a$, for any $t \in a \circ b$. Since a is a hyperatom, we get t = 0 or t=a. Hence $a\circ b\subseteq\{0,a\}$ and so $a\circ b\subseteq A(H)$. Therefore, A(H) is a hyper subalgebra of H.

Definition 3.3. Let H be a hyper BCK-algebra. For any hyperatom $a \in$ $A^*(H) = A(H) - \{0\}, \text{ the set}$

$$B(a) := \{ x \in H \mid a \ll x \} \cup \{ 0 \}$$

is called the branch of H generated by a.

Definition 3.4. A hyper BCK-algebra (H, \ll) is called ordered if the hyperorder " \ll " is transitive.

For any element a of a hyper BCK-algebra H, we denote

$$[a) := \{ x \in H \mid x \ll a \}.$$

Lemma 3.5. Let H be an ordered hyper BCK-algebra. If the set [a) is finite for any $a \in H$, then

$$H = \bigcup_{a \in A^*(H)} B(a).$$

Proof. It suffices to show that for any $0 \neq x \in H$, there exists $a \in A^*(H)$ such that $x \in B(a)$. Let $0 \neq x \in H$. If x is a hyperatom, then, since $x \in B(x)$, the result holds. Otherwise, there is $x_1 \in H$ such that $x_1 \ll x$ and $x_1 \neq x$. If $x_1 \in A^*(H)$, then $x \in B(x_1)$, and so the proof is complete. Otherwise, there exists $x_2 \in H$ such that $x_2 \ll x_1$ and $x_2 \neq x_1$. By transitivity of \ll , we get $x_2 \ll x_1 \ll x$. Since [x] is finite, this process will be stopped in a hyperatom element, e.i., there exists $x_n \in A^*(H)$ such that $x_n \ll x_{n-1} \ll ... \ll x_1 \ll x$. Thus $x \in B(x_n)$. This completes the proof.

Definition 3.6. An ordered hyper BCK-algebra H is called a direct sum of branches and denoted by $H = \bigoplus_{a \in A^*(H)} B(a)$ if it satisfies the following:

(i)
$$H = \bigcup_{a \in A^*(H)} B(a)$$
,

(i) $H = \bigcup_{a \in A^*(H)} B(a)$, (ii) $B(a) \cap B(b) = \{0\}$, for any $a, b \in A^*(H)$ with $a \neq b$.

EXAMPLE 3.7. (i) Let $H = \{0, a, b, c\}$. Consider the following table:

0	0	a	b	c
0	{0}	{0}	{0}	{0}
a	$\{a\}$	$ \{0, a\} $ $ \{b\} $	{0}	$\{a\}$
b	$\{b\}$	$\{b\}$	$\{0,a,b\}$	$\{b\}$
c	$\{c\}$	$\{c\}$	$\{c\}$	$\{0,c\}$

Then $(H; \circ, 0)$ is an ordered hyper BCK-algebra. It is routine to check that $A^*(H) = \{a, c\}, B(a) = \{0, a, b\}$ and $B(c) = \{0, c\}$. Therefore $H = B(a) \oplus B(c)$ and so H is a direct sum of branches.

(ii) Let $K = \{0, 1, 2, 3\}$, with hyper operation " \circ " given by the following table:

0	0	1	2	3
0	{0}	{0}	{0}	{0}
1	{1}	$\{0, 1\}$	{1}	{0}
2	{2}	{2}	{0}	{0}
3	{3}	{2}	{1}	{0}

Then $(K; \circ, 0)$ is an ordered hyper BCK-algebra but it is not a direct sum of branches since $B(1) \cap B(2) \neq \{0\}$.

Lemma 3.8. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. Then the following statements hold for any $x, y \in H$, $T \subseteq H$ and $a \in A^*(H)$.

- (i) $\{x\} \ll B(a)$ implies $x \in B(a)$,
- (ii) $T \ll B(a)$ implies $T \subseteq B(a)$,
- (iii) $(x \circ y) \cap B(a) \neq \phi, \{0\} \text{ implies } x \circ y \subseteq B(a).$

Proof. (i) Let $x \in H$ be such that $\{x\} \ll B(a)$ for some $a \in A^*(H)$. If x = 0, then clearly $x \in B(a)$. Assume that $x \neq 0$. Thus there exists $z \in B(a)$ such that $x \ll z$. Since $H = \bigoplus_{a \in A^*(H)} B(a)$, there exists $b \in A^*(H)$ such that $x \in B(b)$. Hence $b \ll x$ and so $b \ll z$. Then $z \in B(a) \cap B(b)$. It follows from $x \ll z$ and $x \neq 0$ that $z \neq 0$. Hence $B(a) \cap B(b) \neq \{0\}$ and so by Definition 3.6, a = b. Therefore $x \in B(a)$.

- (ii) It is a consequence from (i).
- (iii) Let $x, y \in H$ and let $a \in A^*(H)$ be such that $(x \circ y) \cap B(a) \neq \emptyset, \{0\}$. Then there exists $0 \neq t \in x \circ y$ such that $t \in B(a)$. Hence $a \ll t$ and so from $x \circ y \ll x$, we get $a \ll x$. This implies that $x \in B(a)$ and so $x \circ y \ll B(a)$. Then by (ii), we get $x \circ y \subseteq B(a)$, which completes the proof.

Proposition 3.9. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. Then for any $a \in A^*(H)$, we have

- (i) B(a) is a hyper subalgebra of H,
- (ii) B(a) is a weak hyper BCK-ideal of H,
- (iii) B(a) is a strong hyper BCK-ideal of H.

Proof. (i) Let $a \in A^*(H)$ and $x, y \in B(a)$. Since $x \circ y \ll \{x\} \in B(a)$, it follows that $x \circ y \ll B(a)$. Hence by Lemma 3.8(ii), we get $x \circ y \subseteq B(a)$. Therefore B(a) is a hyper subalgebra of H.

(ii) Let $x, y \in H$ be such that $x \circ y \subseteq B(a)$ and $y \in B(a)$, for some $a \in A^*(H)$. We will show that $x \in B(a)$. If $x \circ y = \{0\}$, then $x \ll y$ and so $x \ll B(a)$. Hence by Lemma 3.8 (i), $x \in B(a)$. If $x \circ y \neq \{0\}$, then there exists $(0 \neq)t \in x \circ y$

and so $a \ll t$. Since $t \ll x$, we get $x \in B(a)$. Therefore B(a) is a weak hyper BCK-ideal of H.

(iii) Let $x, y \in H$ be such that $y \in B(a)$ and $(x \circ y) \cap B(a) \neq \phi$ for some $a \in A^*(H)$. If $(x \circ y) \cap B(a) = \{0\}$, then $0 \in x \circ y$ and so $x \ll y$, which implies that $x \in B(a)$. If $(x \circ y) \cap B(a) \neq \{0\}$, then by Lemma 3.8 (iii), $x \circ y \subseteq B(a)$. By (ii), B(a) is a weak hyper BCK-ideal. Hence from $x \circ y \subseteq B(a)$ and $y \in B(a)$, we get $x \in B(a)$. Therefore B(a) is a strong hyper BCK-ideal.

Theorem 3.10. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. Then for any nonempty subset Q of $A^*(H)$, $\bigoplus_{a \in Q} B(a)$ is a strong hyper BCK-ideal of H.

Proof. The proof is similar to the proof of Proposition 3.9(iii) by some modification. \Box

Since every strong hyper BCK-ideal is a (weak) hyper BCK-ideal, we have the following corollary.

Corollary 3.11. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. Then for any nonempty subset Q of $A^*(H)$, $\bigoplus_{a \in Q} B(a)$ is a (week) hyper BCK-ideal of H.

The following proposition shows that the union of two direct sum of branches is a direct sum of branches too.

Proposition 3.12. Let $H = \bigoplus_{a \in A^*(H)} B(a)$ and $K = \bigoplus_{b \in A^*(K)} B(b)$. If $H \cap K = (0)$, then $H \oplus K$ is a direct sum of branches, where $H \oplus K = H \cup K$ and its hyperoperation " \circ " is defined as follows:

$$x \circ y := \begin{cases} x \circ_H y & \text{if } x, y \in H, \\ x \circ_K y & \text{if } x, y \in K, \\ \{x\} & \text{otherwise} \end{cases}$$
 (3.1)

for all $x, y \in H \cup K$.

Proof. From [9], it is known that $H \oplus K$ is a hyper BCK-algebra. By (3.1), $x \ll_{H \oplus K} y$ if and only if $x, y \in H$ or $x, y \in K$. This implies that $H \oplus K$ is ordered. Let $a \in A^*(H)$ and let $(0 \neq)x \in H \oplus K$ be such that $x \ll a$. Then $0 \in x \circ a$ and so from $x \neq 0$ we conclude $x \circ a \neq \{x\}$. Hence, it follows from (3.1) and $a \in H$ that $x \circ a = x \circ_H a$. Then $x \ll_H a$. Since a is a hyperatom of H, we get x = a. Hence a is a hyperatom of $H \oplus K$ and so $A^*(H) \subseteq A^*(H \oplus K)$. Similarly, we can show that $A^*(K) \subseteq A^*(H \oplus K)$. Thus $A^*(H) \cup A^*(K) \subseteq A^*(H \oplus K)$. Obviously, since $H, K \subseteq H \oplus K$, we get $A^*(H \oplus K) \subseteq A^*(H) \cup A^*(K)$. Hence $A^*(H \oplus K) = A^*(H) \cup A^*(K)$. It is clear that $H \cup K = (\bigoplus_{a \in A^*(H)} B(a)) \cup (\bigoplus_{b \in A^*(K)} B(b))$. Since $B(a) \cap B(b) = (0)$ for

any $a \in A^*(H)$ and $b \in A^*(K)$, we obtain $H \oplus K = \bigoplus_{c \in A^*(H) \cup A^*(K)} B(c)$ and so $H \oplus K = \bigoplus_{c \in A^*(H \oplus K)} B(c)$. Therefore $H \oplus K$ is a direct sum of branches. \square

We recall that an ordered hyper BCK-algebra is said to be a lower hyper BCK-semilattice if $x \wedge y$, the greatest lower bound of x and y, exists for any $x, y \in H$. Also, a proper hyper BCK-ideal P of a lower hyper BCK-semilattice is said to be prime if $x \wedge y \in P$ implies $x \in P$ or $y \in P$ for any $x, y \in H$ (see [5]).

Proposition 3.13. Let $H = \bigoplus_{a \in A^*(H)} B(a)$ be a lower hyper BCK-semilattice and $|P| \ge 2$. Then for any $b \in A^*(H)$, $Q_b := \bigcup_{b \ne a \in A^*(H)} B(a)$ is a prime hyper BCK-ideal of H.

Proof. Let $b \in A^*(H)$. By Corollary 3.11, Q_b is a hyper BCK-ideal of H. Let $x, y \in H$ be such that $x \notin Q_b$ and $y \notin Q_b$. Hence, we get $x, y \in B(b), x \neq 0$ and $y \neq 0$. Thus $b \ll x, y$ and so $b \ll x \wedge y$. It follows that $x \wedge y \in B(b)$. Moreover, $x \wedge y \neq 0$ because $b \neq 0$. Hence $x \wedge y \notin Q_b$. Therefore Q_b is prime.

The following theorem gives a necessary condition for a hyper BCK-ideal to be prime.

Theorem 3.14. Let $H = \bigoplus_{a \in A^*(H)} B(a)$ be a lower hyper BCK-semilattice. If I is a prime hyper BCK-ideal of H, then $H - I \subseteq B(a)$ for some $a \in A^*(H)$.

Proof. Let I be a prime hyper BCK-ideal of H. If $|A^*(H)| = 1$, then B(a) = H for $a \in A^*(H)$ and so clearly $H - I \subseteq B(a)$. Assume that $|A^*(H)| \ge 2$. Suppose on the contrary, $H - I \not\subseteq B(a)$ for any $a \in A^*(H)$. Then, since $H - I \subseteq \bigcup_{a \in A^*(H)} B(a)$ and $|A^*(H)| \ge 2$, there exist $b, c \in A^*(H)$ with $b \ne c$ such that $(H - I) \cap B(b) \ne \phi$ and $(H - I) \cap B(c) \ne \phi$. Hence there are $x \in (H - I) \cap B(b)$ and $y \in (H - I) \cap B(c)$. This imply $x \in B(b)$, $y \in B(c)$ and $x, y \notin I$. By Corollary 3.11, B(b) is a hyper BCK-ideal of H. Then it follows from $x \land y \ll x \in B(b)$ and Lemma 3.8(i) that $x \land y \in B(b)$. Similarly, we have $x \land y \in B(c)$. Hence $x \land y \in B(b) \cap B(c)$ and so $x \land y = 0$. On the other hand, since $x, y \notin I$ and I is prime, we have $x \land y \notin I$. Hence $0 \notin I$, which a contradiction. Therefore $H - I \subseteq B(a)$ for some $a \in A^*(H)$.

Proposition 3.15. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. If the branch B(a) is bounded such that $S(H) \cap B(a) = \{0, c_a\}$ where c_a is an upper bound of B(a), for some $a \in A^*(H)$, then $I := H - \{c_a\}$ is a hyper BCK-ideal of H.

Proof. Obviously, $0 \in I$. It suffices to show that the inequality $c_a \circ x \ll I$ does not hold for any $x \in I$. Suppose on the contrary that $c_a \circ x \ll I$ for some $x \in I$.

Then for any $t \in c_a \circ x$ there exists $i_t \in I$ such that $t \ll i_t$. Since $c_a \in S(H)$, we get $c_a \circ c_a = \{0\}$. Applying the axiom (H1), we have

$$t \circ t \subseteq (c_a \circ x) \circ (c_a \circ x) \ll c_a \circ c_a = \{0\}.$$

This implies that $t \circ t = \{0\}$. Hence $t \in S(H)$. By Lemma 3.8(i), since $t \ll c_a \in B(a)$, we have $t \in B(a)$. Therefore $t \in S(H) \cap B(a)$ and so t = 0 or $t = c_a$. If t = 0, then $c_a \ll x$, which implies that $x \in B(a)$. Thus, since c_a is an upper bound of B(a), we have $c_a = x$, which a contradiction. If $t = c_a$, then $c_a \ll i_t$. This implies that $i_t \in B(a)$ and so $c_t = i_t$. Hence $c_a \in I$, which a contradiction. Therefore the assumption is false and so I is a hyper BCK-ideal.

Theorem 3.16. Let $H = \bigoplus_{a \in A^*(H)} B(a)$, and let all branches of H be bounded.

Assume that $S(H) = U \cup \{0\}$, where U is the set of upper bounds of branches. Then M is a maximal hyper BCK-ideal of H if and only if $M = H - \{c_a\}$, for some $c_a \in U$.

Proof. Let M be a maximal hyper BCK-ideal of H. Then M is prime and so by Theorem 3.14, there exists $a \in A^*(H)$ such that $H - M \subseteq B(a)$. Hence there exists $T \subseteq B(a)$ such that $M = \bigoplus_{a \neq b \in A^*(H)} B(b) \cup T$. We note that if

 $\mid A^* \mid = 1$, then we have M = T. Assume that $c_a \in B(a)$ is an upper bound of B(a). If $c_a \in T$, then $B(a) \subseteq T$ and so M = H, which a contradiction. Hence $c_a \notin T$. This implies that $M \subseteq H - \{c_a\}$. By Proposition 3.15, $H - \{c_a\}$ is a hyper BCK-ideal. Then by maximality of M, we get $M = H - \{c_a\}$. Conversely, by Theorem 3.15, the result holds.

Definition 3.17. A hyper BCK-algebra H is said to be *hyperatomic* if each its element is hyperatom, i.e., A(H) = H.

Proposition 3.18. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. Then there exists a regular congruence ρ on H such that the quotient hyper BCK-algebra $\frac{H}{\rho}$ is hyperatomic.

Proof. Let $H = \bigoplus_{a \in A^*(H)} B(a)$. Define the relation ρ on H as follows:

$$x \rho y \Leftrightarrow x = y = 0 \text{ or } a \ll x, y, \text{ for some } a \in A^*(H).$$

Putting $B^*(a) = B(a) - \{0\}$, it is easy to see that the sets $\{0\}$ and $B^*(a)$ for any $a \in A^*(H)$ form a partition of H. This implies that ρ is an equivalence relation on H. It is clear that $[0]_{\rho} = \{0\}$ and $[a]_{\rho} = B^*(a)$. Let $x, y \in H$ be such that $x\rho y$. Then x = y = 0 or $x, y \in B^*(a)$, for some $a \in A^*(H)$. Hence for any $z \in H$, $x \circ z = y \circ z$ or $x \circ z, y \circ z \subseteq B^*(a)$. This implies $x \circ z\overline{\rho}y \circ z$. Similarly, we can show that if $x\rho y$, then $z \circ x\overline{\rho}z \circ y$, for any $z \in H$. Thus ρ is congruence. To proof the regularity of ρ assume that $x \circ y\rho 0$ and $y \circ x\rho 0$ for some $x, y \in H$. Then there are $t \in x \circ y$ and $s \in y \circ x$ such that $t\rho 0$ and $s\rho 0$.

Then, from $[0]_{\rho} = \{0\}$, we get t = s = 0, and so $x \ll y$ and $y \ll x$. Hence x = y and consequently, $x \rho y$. Thus ρ is regular and so by Theorem 2.9, $\frac{H}{\rho}$ is a hyper BCK-algebra. Let $[a]_{\rho} \in \frac{H}{\rho}$. If $[x]_{\rho} \ll [a]_{\rho}$, for some $[x]_{\rho} \in \frac{H}{\rho}$, then $[0]_{\rho} \in [x]_{\rho} \circ [a]_{\rho}$ and so $[0]_{\rho} = [t]_{\rho}$ for some $t \in x \circ a$. Hence t = 0 and so $x \ll a$. Since a is a hyperatom, we get x = 0 or x = a, which implies $[x]_{\rho} = [0]_{\rho}$ or $[x]_{\rho} = [a]_{\theta}$. Therefore $\frac{H}{\rho}$ is hyperatomic.

Now, we recall the definition of hypercondition and consider $H = \bigoplus_{a \in A^*(H)} B(a)$ satisfying the hypercondition.

Definition 3.19. [9] A hyper BCK-algebra H is said to satisfy the hypercondition if, for every $a,b \in H$, the set $\nabla(a,b) := \{x \in H \mid 0 \in (x \circ a) \circ b\}$ has the greatest hyperelement. This greatest hyperelement is denoted by $a \ominus b$. Obviously, $0, a, b \in \nabla(a, b)$.

Lemma 3.20. If $H = \bigoplus_{a \in A^*(H)} B(a)$ satisfies the hypercondition, then H = B(a), for some $a \in A^*(H)$.

Proof. Let t be a non-zero element of H. Then there exists $a \in A^*(H)$ such that $t \in B(a)$. By the hypothesis, $t \ominus x$ exists, for all $x \in H$. Since $t \ll t \ominus x$, we get $t \ominus x \in B(a)$. By Lemma 3.8(i), it follows from $x \ll t \ominus x$ that $x \in B(a)$, for any $x \in H$. This implies that H = B(a).

4. Hyper BCK-Chain

Definition 4.1. An ordered hyper BCK-algebra H is said to be a hyper BCK-chain if $x \ll y$ or $y \ll x$, for any $x, y \in H$.

EXAMPLE 4.2. (i) Let $N = \{0, 1, 2, ...\}$ and define a hyperoperation " \circ " on N as follows:

$$x \circ y := \begin{cases} \{0, x\} & \text{if } x \leq y, \\ \{x\} & \text{otherwise} \end{cases}$$

for all $x, y \in H$. Then $(N; \circ, 0)$ is a hyper BCK-chain. In fact $0 \ll 1 \ll 2 \ll ...$; Then H is not a hyper BCK-chain since neither $2 \ll 3$ nor $3 \ll 2$.

(ii) Consider a hyper BCK-algebra $H=\{0,1,2,3\}$ with the following Cayley table:

0	0	1	2	3
0	{0}	{0}	{0}	{0}
1	{1}	$\{0,1\}$ $\{2\}$		$\{0, 1\}$
2	{2}	{2}	{0}	$\{2\}$
3	{3}	$\{3\}$	{3}	{0}

Then H is not a hyper BCK-chain since neither $2 \ll 3$ nor $3 \ll 2$.

(iii) Let $(H; \circ, 0)$ be a hyper BCK-chain, and let $\alpha \notin H$. Then the Iseki's hyper BCK-algebra $K := (H \cup \{\alpha\}; \circ', 0)$ which \circ' is defined by

$$\alpha \circ \alpha = \{0\}, \ x \circ \alpha = \{0\}, \ \alpha \circ x = \{\alpha\}, \ \text{and} \ x \circ y = x \circ y, \text{for any } x, y \in H,$$
 is a hyper BCK -chain.

Definition 4.3. [4] Let H be a hyper BCK-algebra. We say that H satisfies the condition right-multiple (for short, condition r-m) if the following implication holds:

$$(\forall x, y, z \in H) \ (x \ll y \Longrightarrow x \circ z \ll y \circ z).$$

The following theorem gives a condition for the set [a) to be a hyper BCK-ideal.

Theorem 4.4. Let H be a hyper BCK-chain satisfying the condition r-m. If $[a) \cup S(H) = H$ and $[a) \cap S(H) = \{0\}$, then [a) is a hyper BCK-ideal of H.

Proof. Obviously, $0 \in [a)$. It suffices to show that the inequality $x \circ b \ll [a)$ does not hold for any $0 \neq x \in S(H)$ and $b \in [a)$. Suppose on the contrary that the inequality holds for some $0 \neq x \in S(H)$ and $b \in [a)$. Then for any $t \in x \circ b$ there exists $d_t \in [a)$ such that $t \ll d_t$. Since $x \in S(H)$, we get $x \circ x = \{0\}$. Then, using axiom H1, we obtain $t \circ t = \{0\}$. Hence $t \in S(H)$. On the other hand, it follows from $t \ll d_t \in [a)$ that $t \in [a)$. Thus $t \in [a) \cap S(H) = \{0\}$, and so t = 0. Hence $t \in S(H)$. This implies that $t \in S(H)$ is a hyper $t \in S(H)$. Since $t \in S(H)$ is a hyper $t \in S(H)$. Therefore $t \in S(H)$ is a hyper $t \in S(H)$.

The following example shows that the condition $[a) \cap S(H) = \{0\}$ in Theorem 4.4 is necessary.

EXAMPLE 4.5. Consider a hyper BCK-chain $H = \{0, a, b, c\}$ with the following Cayley table:

0	0	a	b	c
0	{0}	{0}	{0}	{0}
a	{ <i>a</i> }	{0}	{0}	{0}
b	$\{b\}$	$\{a\}$	$\{0, a\}$	$\{0,a\}$
c	$\{c\}$	$\{a\}$	$\{a\}$	$\{0,a\}$

Then $[a) = \{0, a\} = S(H)$. Obviously, $b \circ a = \{a\} \ll [a)$ and $b \notin [a)$. It follows that [a) is not a hyper BCK-ideal of H.

Definition 4.6. [4] Let H be a hyper BCK-algebra. We say that H satisfies the condition \ll -scalar if the following implication holds:

$$(\forall x, y \in H) \ (x \ll y \Longrightarrow x \circ y = \{0\}).$$

Lemma 4.7. If a hyper BCK-algebra satisfies the condition \ll -scalar, then it satisfies the condition r-m.

Proof. Let $x, y \in H$ be such that $x \ll y$. Then by hypothesis, we have $x \circ y = \{0\}$ and so by Theorem 2.2(a_9), we have $(x \circ z) \circ (y \circ z) = \{0\}$. This implies that $x \circ z \ll y \circ z$. Therefore H satisfies the condition r-m.

Proposition 4.8. Every hyper BCK-algebra satisfying condition \ll -scalar is a ordered hyper BCK-algebra.

Proof. Let H be a hyper BCK-algebra satisfying the condition \ll -scalar, and let $x, y, z \in H$ be such that $x \ll y$ and $y \ll z$. Then by hypothesis, we get $x \circ y = \{0\}$ and $y \circ z = \{0\}$. By Theorem 2.3(a_9), it follows from $x \circ y = \{0\}$ that $(x \circ z) \circ (y \circ z) = \{0\}$. Hence $x \circ z = \{0\}$, that is, $x \ll z$. Therefore H is a ordered hyper BCK-algebra.

Applying Lemma 4.7 and Theorem 4.4, we have the following corollary.

Corollary 4.9. Let H be a hyper BCK-chain satisfying the condition \ll scalar. If $[a) \cup S(H) = H$ and $[a) \cap S(H) = \{0\}$, then [a) is a hyper BCK-ideal of H.

Theorem 4.10. Let H be a hyper BCK-chain. If the set [a) is finite for any $a \in H$, then |Aut(H)| = 1.

Proof. Assume that $f: H \to H$ is an isomorphism. It suffices to show that f(x) = x for any $x \in H$. Suppose on the contrary that there exists $a \in H$ such that $f(a) \neq a$. Since f(0) = 0 and [a) is finite, then we may suppose that |[a)| = n, where n is the least number with property $f(a) \neq a$ and f(x) = x for any $(a \neq)x \in [a)$. Hence, we can assume that $[a) = \{x_i \in H \mid 0 = x_1 \ll x_2 \ll ... \ll x_{n-1} \ll x_n = a\}$. Therefore $f(x_i) = x_i$ for any i = 1, 2, ..., n - 1. Since f is injective, we have $f(a) \neq x_i$ for any i = 1, 2, ..., n and so $f(a) \notin [a)$. Assume that f(a) = c. Then from $c \notin [a)$ and the fact that H is a chain, we get $a \ll c$ and $a \neq c$. Since f is surjective, there exists $d \in H$ such that a = f(d). Clearly, $d \neq a$. If $d \ll a$, then $d \in [a)$ and so $d = x_i$ for some i = 1, 2, ..., n - 1. Hence f(d) = d and so from a = f(d) we get a = d. This implies f(a) = f(d) = d = a, that is, f(a) = a, which a contradiction. Thus $a \ll d$. If follows from f is isotone that $f(a) \ll f(d)$. Hence $c \ll a$, which a contradiction. Then f(x) = x for any $x \in H$, that is, $f = id_H$. Therefore |Aut(H)| = 1.

The following example shows that the finiteness assumption for [a) in Theorem 4.10 is necessary.

Example 4.11. Let $H=\{0,1,2,\ldots\}\cup\{\frac{1}{n}:n=2,3,\ldots\}$. Define a hyperoperation " \circ " on H as follows:

$$x \circ y := \left\{ \begin{array}{ll} \{0,x\} & \text{if} \ \ x \leq y, \\ \{x\} & \text{otherwise} \end{array} \right.$$

for all $x, y \in H$. It is routine to check that H is a hyper BCK-chain. Clearly, [a) is infinite for any $(0 \neq) a \in H$. Define a function $f: H \to H$ by f(n) = n-1 for n = 2, 3, ...; $f(\frac{1}{n}) = \frac{1}{n+1}$ for n = 1, 2, ...; and f(0) = 0. It can be verified that f is an isomorphism that is not the identity map. Therefore |Aut(H)| > 1.

The following proposition shows that the image of a branch of an isomorphism is a branch too.

Theorem 4.12. Let $H = \bigoplus_{a \in A^*(H)} B(a)$ and $K = \bigoplus_{b \in A^*(K)} B(b)$. If all branches of H and K are chain, then the following statements hold:

- (i) If $f: H \to K$ is a homomorphism, then $f(B(a)) \cap B(b) \neq (0)$ implies $f(B(a)) \subseteq B(b)$, for any $a \in A^*(H)$ and $b \in A^*(K)$;
- (ii) If $f: H \to K$ is an isomorphism, then for any $a \in A^*(H)$, there exists $b \in A^*(K)$ such that f(a) = b and f(B(a)) = B(b) and consequently, |B(a)| = |B(b)|.
- Proof. (i) Assume that $f(B(a)) \cap B(b) \neq (0)$ for some $a \in A^*(H)$ and $b \in A^*(K)$. Then there exist $x \in B(a)$ and $y \in B(b)$ such that $y = f(x) \neq 0$. For any $t \in B(a)$, we have $t \ll x$ or $x \ll t$. Since f is isotone, we get $f(t) \ll f(x)$ or $f(x) \ll f(t)$. Hence $f(t) \ll y$ or $y \ll f(t)$. If $f(t) \ll y$, then by Lemma 3.8(i), we have $f(t) \in B(b)$. If $y \ll f(t)$, then it follows from $b \ll y$ that $b \ll f(t)$ and so $f(t) \in B(b)$. Therefore $f(B(a)) \subseteq B(b)$.
- (ii) Let $a \in A^*(H)$. Clearly, $f(a) \in B(b)$ for some $b \in Q$. Since $a \neq 0$, we get $f(a) \neq 0$. Hence $b \ll f(a)$. Since f is epimorphism, b = f(t) for some $t \in H$. Thus $f(t) \ll f(a)$ and so $t \ll a$ because f^{-1} is isotone. Since a is a hyperatom, we get t = a. Hence f(a) = b. To proof the second part (ii), we note that $0 \neq f(a) \in f(B(a)) \cap B(b)$. Using (i), we get $f(B(a)) \subseteq B(b)$. Let $0 \neq y \in B(b)$. Then $b \ll y$. But b = f(a). Hence $f(a) \ll y$ and so $a \ll f^{-1}(y)$. This implies $f^{-1}(y) \in B(a)$. Hence $y = f(f^{-1}(y)) \in f(B(a))$, and consequently $B(b) \subseteq f(B(a))$. Therefore B(b) = f(B(a)). It is clear that |B(a)| = |f(B(a))|. Therefore |B(a)| = |B(b)|.

ACKNOWLEDGMENTS

The author is highly grateful to referees for their valuable comments and suggestions for improving the paper.

References

- R. A. Borzooei, H. Harizavi, Regular congruence relations on Hyper BCK-algebras, Scientiae Mathematicae Japonicae, 61(1), (2005), 83-97.
- R. A. Borzooei, A. Rezazadeh, A. Ameri, On Hyper Pseudo BCK-algebras, Iranian Journal of Mathematical Sciences and Informatics, 9(1), (2014), 13–29.
- R. A. Borzooei, O. Zahiri, Radical and Its Applications in BCH-Algebras, Iranian Journal of Mathematical Sciences and Informatics, 8(1), (2013), 15–29.

- H. Harizavi, On Hyper BCK-algebras with condition r-m, International journal of algebra, 4(9), (2010), 403-412.
- H. Harizavi, R. A. Borzooei, Lattice structure on generated weak hyper BCK-ideals of a hyper BCK-algebra, *Italian Journal of Pure and Applied Mathematics*, 26, (2009), 227-238.
- 6. Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, *Proc. Japan Academy*, **42**, (1966), 19-22.
- Y. B. Jun, X. L. Xin, Scalar elements and hyperatoms of hyper BCK-algebra, Scientiae Mathematicae Japonicae, 2(3), (1999), 303-309.
- 8. Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebra, $Mathematicae\ Japonicae,\ {\bf 51}(3),\ (2000),\ 493-498.$
- 9. Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCK-algebra, Italian Journal of Pure and Applied Mathematics, Oxford Ser, 10, (2000), 127-136.
- F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockhholm, (1934), 43-49.